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Abstract

A coupled mode system is derived to investigate a three-wave parametric instability leading to energy transfer

between co-propagating laser beams crossing in a plasma flow. The model includes beams of finite width refracting

in a prescribed transverse plasma flow with spatial and temporal gradients in velocity and density. The resulting par-

axial light equations are discretized spatially with a Crank–Nicholson-type scheme, and these algebraic constraints are

nonlinearly coupled with ordinary differential equations in time that describe the ion acoustic response. The entire non-

linear differential-algebraic system is solved using an adaptive, backward-differencing method coupled with Newton�s
method. A numerical study is conducted in two dimensions that compares the intensity gain of the fully time-dependent

coupled mode system with the gain computed under the further assumption of a strongly damped ion acoustic response.

The results demonstrate a time-dependent gain suppression when the beam diameter is commensurate with the velocity

gradient scale length. The gain suppression is shown to depend on time-dependent beam refraction and is interpreted as

a time-dependent frequency shift.
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1. Introduction

Laser-plasma interactions that lead to a resonant transfer of energy between crossed laser beams could

affect indirect-drive inertial confinement fusion experiments to be performed at the National Ignition Facil-

ity (NIF) [1]. In such experiments, dozens of beams will cross in the plasma flowing supersonically from the
hohlraum laser entrance hole (LEH). Inter-beam energy transfer could redistribute the illumination within

the hohlraum, adversely affecting the implosion symmetry required to achieve fusion.

The seminal work on inter-beam power transfer concerned beams of different frequencies crossing at a

small angle in a stationary homogeneous plasma [2]. The transfer takes place through the well-known stim-

ulated Brillouin scattering process wherein the ponderomotive force of the two laser beams resonantly

drives an ion acoustic wave at the difference frequency and the wavevector of the two laser beams. Such

a transfer process was demonstrated experimentally by comparing the power transmitted by a lower-

frequency ‘‘probe’’ laser beam in the presence of a higher-frequency ‘‘pump’’ laser beam to the power trans-
mitted either when the pump beam was absent or when the beam frequency difference failed to satisfy the

forward Brillouin resonance condition of the transfer [3,4].

Plasma flow can both detune the resonance when the laser beams have different frequencies or allow the

interaction to occur when the beams have equal frequencies. When a plasma flow exists, in which the veloc-

ity component in the ion acoustic wave direction is the plasma sound speed, but of opposite sign, the driven

ion acoustic wave becomes a standing wave in the lab frame. In such a configuration, the stationary density

grating imposed by the ion acoustic wave is wavenumber-matched to Bragg (Brillouin) scatter energy from

the upstream pump beam to the downstream probe beam.
The power transfer in flowing plasma of equal frequency laser beams was shown in a series of experi-

ments [5,6]. These experiments stimulated multidimensional simulations and theory that considered a vari-

ety of physical effects that influence the power transfer such as self-focusing and geometry [7], beam

intensity non-uniformity and beam deflection of overlapping beams [8], nonlinear power transfer between

different frequency beams in a homogeneous plasma in two and three dimensions [9,10], and power transfer

between beams that each have multiple frequencies [11] such as occurs with some beam smoothing tech-

niques [12].

To understand better the potential impact of cross-beam energy transfer, a new series of experiments
were performed at the University of Rochester�s Laboratory for Laser Energetics [13]. In these experiments,

heater beams exploded a foil, generating an expanding column of plasma. A pair of laser beams were

crossed in this flow where the local plasma state nears the sonic resonance condition. The transmitted

power in the pump and probe beams were measured and adjusted to compensate for inverse Bremsstrah-

lung absorption.

Although these experiments demonstrated power transfer that verified the underlying physics, the trans-

fer was significantly less than that suggested by the simulations and the theory with a linear response of the

ion wave to the ponderomotive drive. The amplification of the beam gaining power decreased as its initial
amplitude increased, suggesting a nonlinear process. Simulations with the particle-in-cell (PIC) code, Zohar

[14], in one dimension have shown that the ion waves are indeed driven to nonlinear levels which reduces

the effectiveness of the power transfer because of kinetic effects such as nonlinear frequency shifts [15]. Re-

cently, a PIC-inspired model for nonlinear frequency shifts has been used successfully to simulate the exper-

iments provided the interaction length is limited to less than the full interaction length [16].

However, none of the theory and simulation efforts to date incorporate all the effects known to influence

the experimental results. For example, in the experiments with plasma flow, the flow conditions satisfy the

resonance condition for forward SBS for only a fraction of the beam cross section because of flow gradients
across the beams and for only a limited duration because the flow evolution. In addition, the flow gradients

are accompanied by electron density gradients, which refract each beam and dynamically move the reso-

nance surface.
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In conjunction with the experimental work at Rochester, a numerical study was conducted using the

adaptive laser plasma simulator (ALPS) [17]. In the ALPS code, a paraxial light model is coupled to a non-

linear, quasineutral fluid representation of the plasma. This model is capable of representing the hydrody-

namic-scale velocity and density gradients and finite-beam interaction effects, but not kinetic nonlinearity of

the ion waves. The numerical experiments initialized the plasma conditions with a self-similar rarefaction
fan with a stationary sonic line. Unfortunately, the numerical solutions were unable to replicate the non-

linear saturation seen in the exploding-foil experiments – a result consistent with the hypothesis that the

nonlinear saturation mechanism is a kinetic effect not modeled in the fluid equations. However, the numer-

ical results regularly demonstrated an unexpected transient suppression of the energy transfer for plasma

flows with large initial gradients relative to the beam diameters.

To further investigate this effect and to reduce the computational expense, we have developed the numer-

ical model described in this paper, which demonstrates the same transient gain suppression. The mathemat-

ical model is a coupled-mode (three-wave) system similar to those used to study other plasma parametric
instabilities, but specialized to this particular problem. We consider the interaction of pump and probe laser

beams crossing in a quasineutral plasma freely expanding into a vacuum as shown in Fig. 1. We assume

that the beams have the same frequency and diameter and that the beams co-propagate with a small angle

between them. This latter constraint allows for the use of a time-enveloped, paraxial description of the evo-

lution of the complex light wave amplitudes similar to that used in the ALPS code. The plasma flow is mod-

eled as a time-dependent, one-dimensional linearization about a self-similar, continuum rarefaction flow.

We assume a harmonic form for the ion acoustic perturbations that nominally satisfy the three-wave res-

onant condition,
x0 � x1 ¼ 0 � �jk0 � k1jcs þ ðk0 � k1Þ � v; ð1Þ

where x0 and x1 are the pump and probe frequencies, respectively; k0 and k1 are the pump and probe wave-

number vectors respectively; cs is the ion acoustic speed; and v is the flow velocity. The discretized coupled-

mode system is integrated in time using a differential algebraic system solver.

The assumption of a self-similar expansion allows the plasma flow to be characterized by a single param-

eter, L^, the transverse velocity scale length. When the ion acoustic perturbations have a length scale much
Fig. 1. Basic configuration of lasers crossing in the vicinity of the sonic line (M0 = 1) of an expanding plasma.
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smaller than L^, and in the limit of strong acoustic damping, the acoustic system reduces to an algebraic

equation for the complex density perturbation amplitude in terms of the enveloped laser field amplitudes;

this is a modest extension of the Rosenbluth gain formula [18]. At the other extreme, for problems in which

the background scale length L^ approaches the beam width or less, we will show that the motion of the

beams due to their refraction in the evolving density profile introduces a temporal phase shift that modifies
the resonant condition (1). The fact that time-dependence in background scattering media can affect the

gain rate for parametric instabilities was demonstrated in [19,20], in the latter case for backward stimulated

Brillouin scattering in a one-dimensional, isothermal rarefaction. The analogous result presented here pro-

vides a quantitative description of this effect for the crossed beam scenario, and we have chosen to focus on

this phenomenon in this paper instead of other gain modifying effects such as pump depletion or particle

trapping.

In Section 2, we present the coupled-mode model. After some simplifications, a formula for the steady-

state probe gain is presented. The numerical methods used to integrate the full, coupled mode system are
described in Section 3. In Section 4, we present numerical results obtained using the model, with a final

discussion in Section 5.
2. Theoretical model

Consider the standard Euler–Poisson fluid model for a quasineutral plasma. For electron and ion num-

ber densities ne and ni, respectively, the Poisson equation for the electrostatic potential / is
�0r2/ ¼ eðne � ZniÞ � 0; ð2Þ

where �0 is the permittivity of free space, e is the fundamental charge, and Z is the ionization state. Quasi-

neutrality (ne � Zni) is a suitable assumption for length scales much larger than the Debye length, and this

approximation allows one to describe the plasma dynamics using the fluid equations for a single agglom-
erated species.

We denote by n ” ni � ne/Z the number density; v the velocity vector; p the pressure; m the com-

posite mass per particle; and fpðn;EÞ the specific ponderomotive force due to the laser electric field E.
Furthermore, we allow for the effects of a damping force d(v) on the plasma; the exact form for this

damping will remain unspecified momentarily. Conservation of mass and momentum are thus ex-

pressed by
otnþ ðv � rÞnþ nr � v ¼ 0; ð3aÞ

otvþ ðv � rÞvþ 1

mn
rp ¼ f þ d. ð3bÞ
For an equation of state, we assume an ideal gas in local thermodynamic equilibrium (p = nKT) with an

additional constraint of either isothermality or adiabaticity; this gives the differential relationship
dp ¼ mc2a dn. ð4Þ

in lieu of a transport equation for energy. Note the limitation in this treatment of the plasma energy as it

neglects any plasma heating due to laser absorption or damping of ponderomotively driven flows. For suf-
ficiently high plasma temperatures, it is expected that these heating mechanisms are higher-order effects.

Under such assumptions, for an isothermal plasma, c2a ¼ KT=m is a constant isothermal sound speed,

and for an adiabatic plasma, p � nc, and c2a ¼ cKT=m is the isentropic sound speed. Taking c ! 1 repro-

duces the isothermal result. Thus, without loss of generality, we will work with the adiabatic form and

recover the isothermal result by setting c = 1.
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The ponderomotive force f is a ‘‘light pressure’’ that pushes electrons (and subsequently ions via the elec-

trostatic field) down gradients in light intensity. Since the ion-acoustic response of the plasma is a relatively

slow phenomenon, we consider time scales much larger than the period of the time-harmonic light oscilla-

tion 2p/x. The ponderomotive force expressed as a time-averaged quantity over this period is
fp ¼ � Ze2

2memx2
rhjEj2ix ¼ �F prhjEj2ix; ð5Þ
where me is the electron mass.

Direct consideration of the wave equation for the composite electric field E is unrealistic numerically,

given the rapid temporal and spatial variation of the field relative to the scales of the flow evolution and

laser beam widths. Therefore, defining x to be the dominant direction of light propagation, E is assumed
to be time-harmonic and enveloped about a transversely-averaged wavenumber kg0,
Eðt; x; x?Þ ¼ 1
2
P½Eðt; x; x?Þ exp �ixt þ ik�g0ðx� x0Þf g þ c:c:�; ð6Þ
where P is the constant polarization; k = x/c is the free-space wavenumber; c is the speed of light; g0(x) is
the index of refraction averaged over the transverse directions x^; and
�g0 ¼
1

x� x0

Z x

x0

g0ðx0Þdx0 ð7Þ
is the index of refraction averaged over the distance (x � x0).

The index of refraction g is related to the plasma density by g2 ” 1 � n/nc, where nc = x2�0me/e
2 is the

critical density. Further assuming one-way propagation at small angles to the longitudinal direction x,

the complex-valued envelope E will satisfy a paraxial wave equation in the x-direction,
oxE ¼ i

2kg0
r2

?E þ ik2

2kg0
ðg2 � g20ÞE � mcE; ð8Þ
where mc is a collisional absorption rate and r2
? is the two-dimensional Laplacian over the transverse direc-

tions x^.

2.1. Three-wave resonance

We reduce the problem from the governing equations for the plasma (3) and electric field (8) to a set of

coupled wave equations. The plasma flow field is assumed to be a perturbation imposed upon a large-scale

background flow:
n ¼ n0 þ dn; v ¼ csðM0 þ dMÞ; and p ¼ p0 þ dp; ð9Þ

where cs is a characteristic sound speed. It is assumed that jdnj � n0, jdpj � p0, and jdMj � 1. For either

isentropic or adiabatic flow, it can be shown that substituting (9) into (4) and grouping terms of similar
order leads to the relationships
dp0 � mc20 dn0 and dp � mc20 dn; ð10Þ

where c20 ¼ cp0=ðmn0Þ. Details are provided in Appendix A.

Before substituting (9) into (3) to derive perturbation equations, a form must be assumed for the

damping force. This force is meant to represent the effect of linear Landau damping, a non-local phe-

nomenon that is most easily expressed in Fourier space. Since the forcing of the plasma by the beat wave

of the crossing laser beams will be confined to a narrow spectrum of wave numbers about (k0 � k1), a

simpler model tuned to the correct Landau damping rate for that wavenumber band will be adopted.

We choose
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dðvÞ ¼ �maðv� v0Þ ¼ �2macs dM; ð11Þ

that is, the damping (drag) force resists perturbations from the background flow. These perturbations relax
to the background flow over a characteristic time 1/ma, the inverse of the damping rate.1

Substituting (9)–(11) into (3) and collecting terms of like order (neglecting products of small quantities)

produces two sets of equations,
ðot þ csM0 � rÞn0 þ csn0r �M0 ¼ 0; ð12aÞ

csðot þ csM0 � rÞM0 þ c20rðln n0Þ ¼ 0; ð12bÞ

and
1

cs
ot þM0 � r

� �
dn
n0

þr � dM ¼ �dM � rðln n0Þ � 2ðr �M0Þ
dn
n0

; ð13aÞ

1

cs
ot þM0 � r þ 2ma

cs

� �
dMþ c20

c2s
r dn

n0
¼ fp

c2s
� ðc� 1Þ c

2
0

c2s
rðln n0Þ

dn
n0

� dM � rM0. ð13bÞ
The first set of equations describes the evolution of the background flow, and the second describes the evo-

lution of the perturbations driven by the ponderomotive force. In grouping terms, we have assumed that the

ponderomotive force is suitably small that it contributes no leading-order effect on the background flow.

We now assume that perturbations possess a spatially harmonic factor. Defining the wavenumber of the

acoustic perturbation to be ka, the perturbations are
dn
n0

¼ 1

2
bn þ c:c:ð Þ ¼ 1

2
enðx; tÞ expfika � xg þ c:c:ð Þ; ð14aÞ

dM ¼ 1

2
ðcM þ c:c:Þ ¼ 1

2
ðfMðx; tÞ expfika � xg þ c:c:Þ. ð14bÞ
Similarly, the electric field envelope satisfying (8) is assumed to be composed of two fields with harmonic

factors:
E ¼ bE0ðt; xÞ þ bE1ðt; xÞ ð15aÞ
¼ eE0ðt; xÞ exp ik0 � xf g þ eE1ðt; xÞ exp ik1 � xf g. ð15bÞ
We define the primary harmonic factor of the light wave interaction to be
/Dðt; xÞ � expfiðk0 � k1Þ � xg. ð16Þ

Substituting (15) into (5) and neglecting higher harmonics,
fp � �Fr jbE0j2 þ jbE1j2

2
þ

eE0
eE�
1

2
/Dðt; xÞ þ c:c:

 !" #
ð17aÞ

¼ � F
2

rðjbE0j2 þ jbE1j2Þ þ
�
rðeE0

eE�
1Þ þ iðk0 � k1ÞeE0

eE�
1

�
/Dðt; xÞ þ c:c:

� �h i
; ð17bÞ
chnically, this assumption introduces small conservation errors. As a closed system, any momentum and energy lost by the ion

ic wave through internal damping processes remains in the plasma and should appear in the background flow. However, these

ntum and energy losses are small relative to the background flow energy and momentum and thus are reasonably negligible in

proximation.
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Substituting (14) and (17b) into (13), and factoring out the harmonic variation of the acoustic

perturbations,
1

cs
ot þ ika �M0

� �en þ ika �fM ¼ � 2r �M0 þM0 � rð Þen � 1

n0
r � ½n0fM�; ð18aÞ

1

cs
ot þ ika �M0 þ

2ma
cs

� �fM þ i
c20
c2s
kaen ¼ � ðc� 1Þ c

2
0

c2s
rðln n0Þ þ

c20
c2s
r

� �en �M0 � rfM �fM � rM0

� F
c2s

expf�ika � xgrðjbE0j2 þ jbE1j2Þ

� F
c2s

�
rðeE0

eE�
1Þ þ iðk0 � k1ÞeE0

eE�
1

�
; ð18bÞ
where we have assumed the matching condition k0 = k1 + ka. To identify the dominant terms, we must con-
sider the various length scales in a characteristic problem.

Several natural length scales can be distinguished. The background flow imposes a velocity length scale

defined by
L?ðt; xÞ � ðr �M0Þ�1
M0 ð19Þ
as well as a domain width L. The laser beams impose several length scales, most notably a width or

diameter D0,1(t,x) and the dominant wavelength, 2p/k. In addition, the interaction between the two

beams propagating at an angle produces, through the ponderomotive force, a density wave at length

2p/jk0 � k1j = 2p/jkaj, which is longer than the light wavelength. Another intermediate length is the

speckle scale length, where speckles in the beam are caused by the lack of coherence within each beam.

The speckle scale has a characteristic length of Ls = f2p/k0 where the f-number, f = fl/D, is the ratio of the

focal length to aperture of the lens. To distinguish between the density wave scale and the speckle scale,
we can restrict the angle between the beams, 2h, to be greater than the beam divergence angle,

hf = tan�1(1/2f). Physically, we are making a distinction between energy exchanges between beams and

similar internal interactions that modify the properties of each beam that would occur even if the other

beam were not present.

We limit our consideration to the interaction of two idealized beams with smooth spatial envelopes,

associating the scale of the beam envelope with D0,1 and neglecting the speckle scale length. We further spe-

cialize to the case where the velocity scale length, plasma domain length, and beam diameters are all of

roughly the same order of magnitude, jL^j 	 L 	 D, and the laser wavelengths are much smaller than these
lengths, e.g. kjL^j 
 1. Finally, we identify the perturbation scale length 2p/jkaj as an intermediate scale

such that jka Æ L^j 
 1 
 jkaj/k.
Having identified the relative sizes of the various scale lengths, we reconsider (18). Clearly, terms that

vary with derivatives of the background flow or the envelopes will be much smaller than terms with factors

proportional to jkaj. Neglecting such terms we find
1

cs
ot þ ika �M0

� �en þ ika �fM � 0; ð20aÞ

1

cs
ot þ ika �M0 þ

2ma
cs

� �fM þ i
c20
c2s
kaen � � iF

c2s
ka
eE0
eE�
1; ð20bÞ
which is a nonlinearly forced system of ODEs with variable coefficients. Multiplying through by

exp{ika Æ x} and dividing by jkaj, this system (20) can also be written as
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1

ixa

ot þ
ka

jkaj
�M0

� �bn þ ka

jkaj
�cM ¼ 0; ð21aÞ

1

ixa

ot þ
ka

jkaj
�M0 �

i2ma
xa

� �cM þ c20
c2s

ka

jkaj
bn � � Ze2bE0

bE�
1

2memx2c2s

ka

jkaj
. ð21bÞ
All that remains is to specify the nonlinear forcing due to the beating of the light waves.
To derive the reduced equations for the light, we begin with the paraxial equation (8). Since the density

has the form n = n0 + dn, the difference in indices of refraction is
g2 � g20 ¼
�n0 � n0 � dn

2g0nc
; ð22Þ
so (8) becomes
ox �
i

2kg0
r2

? � ik
2g0

ð�n0 � n0Þ
nc

þ mc þ
ik
2g0

dn
nc

� �
E ¼ 0. ð23Þ
We write dn ¼ n0ðbn þ bn�Þ=2 and use the assumed form (15a), to obtain
ox �
i

2kg0
r2

? � ik
2g0

ð�n0 � n0Þ
nc

þ mc þ
ik2n0
4kg0

ðbn þ bn�Þ
nc

� �
ðbE0 þ bE1Þ ¼ 0. ð24Þ
Introducing the harmonic factors from (14) and (15b) and neglecting the higher harmonics resulting

from multiplication, we group terms by like harmonic variation in k0 or k1. Each of these collections must

equal zero independently, and we arrive at a pair of coupled mode equations:
ox �
i

2kg0
r2

? � ik
2g0

ð�n0 � n0Þ
nc

þ mc

� �bE0 ¼ � ik
4g0

n0
nc
bnbE1; ð25aÞ

ox �
i

2kg0
r2

? � ik
2g0

ð�n0 � n0Þ
nc

þ mc

� �bE1 ¼ � ik
4g0

n0
nc
bn�bE0. ð25bÞ
The source terms clearly show the coupling between the light fields through the density perturbation.

The strong-damping or steady-state resonance in the system (21) and (25) is found by assuming that the

temporal derivatives of (21) are small compared to the damping terms. Formally,
ka

jkaj
�M0bn þ ka

jkaj
�cM � 0; ð26aÞ

ka

jkaj
�M0 �

i2ma
xa

� �cM þ c20
c2s

ka

jkaj
bn � � Ze2bE0

bE�
1

2memx2c2s

ka

jkaj
. ð26bÞ
Considering the component of the momentum equation parallel to the acoustic wavenumber and solving

for the density perturbation,
bn ¼ 1

2

ZKT e

mc2s

bv0bv�1
v2e

jka �M0j2

jkaj2
� c20
c2s

� i
2ma
xa

ka

jkaj
�M0

" #�1

; ð27Þ
where bvj � ebEj=mex (j = 0,1) are the (complex) jitter velocities due to the pump and probe beams, respec-

tively, and the electron thermal speed is ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT e=me

p
. The resonance is clear by inspection: when the flow

velocity parallel to the acoustic wave vector is sonic, that is c2s jka �M0ðt; xÞj2 ¼ c20ðt; xÞjkaj2, the real part of
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the denominator vanishes, leaving only the damping term to limit the amplitude of the acoustic

perturbation.

How rapidly this steady state develops depends on the time scale of the background flow. In general, the

background flow evolves slowly enough that its effects on the beam propagation and hence the acoustic

wave excitation are small. The steady state then will be reached in a time on the order of the inverse damp-
ing rate 1/ma, as this is the characteristic time over which the transients in the initial growth of the acoustic

waves will damp away. However, when the background flow causes sufficiently rapid motion of the beams

(e.g. otbn=ma ¼ Oð1Þ), the resonance (27) is modified. This point was demonstrated in previous work [19,20]

that modified the Rosenbluth gain formula [18] to account for effects of time-dependent background flows.

We consider the case where the motion of the beams due to the background flow evolution causes a tem-

poral phase mismatch. For fixed beams, the ponderomotive forcing is stationary in the laboratory frame.

From the frame of a particle moving with the fluid, the forcing appears to have frequency of ka ÆM0cs.

However, if the beams are moving with velocity v in the direction of the flow due to refraction, the fluid
particle would instead see a forcing frequency of ka Æ (M0cs � v), which shifts the resonance.

We explicitly identify this rapid variation in the acoustic response, that is,
bnðt; xÞ ¼ �nðt; xÞ expfi/aðt; xÞg; ð28Þ

and assume that this matches the effective phase variation in the ponderomotive forcing. This is in spirit

similar to the approach taken in [19,20], although we neglect any wavenumber mismatch $/a in favor of

frequency mismatch ot/a. We anticipate that for large flow gradients ot/a 	 ma and therefore is not negli-
gible, while j$/atj � jkaj and thus can be neglected to leading order.

Substituting this into (21) and assuming that time variation of �n is slow, one finds the modified resonance

condition
�n ¼ ZKT e

2mc2s

bv0bv�1
v2e

jka �M0j2

jkaj2
� c20
c2s

þ
_/a

xa

2ka �M0

jkaj
� i

2ma
xa

ka �M0

jkaj
þ

_/a

xa

 !
þ

€/a

x2
a

( )" #�1

; ð29Þ
where _/a and
€/a denote first and second time derivatives of the frequency mismatch and where nonlinear

terms in _/a have been neglected. For non-zero frequency mismatch, the effect is to shift the location of res-

onance away from the sonic condition and to alter the effective damping, which adjusts the maximum
amplitude of the acoustic response. For the numerical simulations presented in Section 4, the frequency

mismatch will only be an issue for flows with short scale lengths.
2.2. Two-dimensional simplifications

We now restrict consideration to two dimensions with a one-dimensional background flow transverse to

the primary direction of beam propagation as shown in Fig. 1. We assume a configuration in which the

excited ion acoustic wave is nearly aligned with the transverse direction y. For beams initially at small,
equal and opposite angles to the direction of propagation, this is a good approximation, even with the

inclusion of beam bending due to transverse density gradients. Thus, we have
M0 þ 1
2
½cM þcM�

� ¼


M0ðt; yÞ þ 1

2
½ bM ðt; xÞ þ bM �ðt; xÞ�

�
êy ð30Þ
and ka � kay êy since jkayj 
 jkaxj. Similarly, jk0yj 
 jk0xj, jk1yj 
 jk1xj, and jk0yj � �jk1yj. We therefore

take k0 � k0y êy � �k?êy and k1 � k1y êy � k?êy such that kay = �2k^. Our perturbation (21) and coupled

mode equations (25) then reduce to
1

ixa

ot �M0

� �bn � bM � 0; ð31aÞ
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1

ixa

ot �M0 �
i2ma
xa

� � bM � c20
c2s
bn � Ze2bE0

bE�
1

2memx2c2s
; ð31bÞ

ox �
i

2kg0
r2

? � ik
2g0

ð�n0 � n0Þ
nc

þ mc

� �bE0 � � ik
4g0

n0
nc
bnbE1; ð31cÞ

ox �
i

2kg0
r2

? � ik
2g0

ð�n0 � n0Þ
nc

þ mc

� �bE1 � � ik
4g0

n0
nc
bn�bE0. ð31dÞ
To close this system, a one-dimensional background flow must be specified.
For lasers crossing near the entry hole of a hohlraum, the plasma flow from the interior of the hohlraum

will be expanding out into a near vacuum. A simple analytical model of an expanding flow that satisfies the

leading-order system (12) is the one-dimensional, self-similar rarefaction. The leading-order system (12) to-

gether with the conditions
n0ðy ¼ 0; tÞ ¼ anc; lim
y!1

n0ðy; tÞ ¼ 0; and 8y; t; n0ðy; tÞ > 0; ð32Þ
possesses a unique similarity solution, which for y/L^ < 2/(c � 1), is
n0ðy; tÞ ¼ anc 1� c� 1

2

y
L?

� �2=ðc�1Þ

; M0ðy; tÞ ¼ 1þ y
L?

;

c20ðy; tÞ ¼
cp0
n0

¼ c2s 1� c� 1

2

y
L?

� �2

; L?ðtÞ ¼ L?ð0Þ þ
cþ 1

2
cst;

ð33Þ
where the reference sound speed cs is now defined to be the sound speed at the sonic line, positioned at

y = 0. The isothermal result is obtained by taking the limit as c ! 1 and significantly simplifies to c0 ” cs
and n0 = ancexp(�y/L^). Note that the adiabatic (c > 1) number density vanishes at a finite distance from
the center line, beyond which it is assumed to be zero.

2.3. Steady-state gain prediction

If we simplify the geometry and physics of the problem even further, we can derive an upper-bound, ana-

lytic, steady-state gain estimate of the resonant interaction. We neglect pump depletion, diffraction, and

refraction due to the n0(y, t) density gradient, and we assume that the beams are positioned symmetrically

at angles ±h about the sonic line, as demonstrated in Fig. 2. The resulting equations for the enveloped light
amplitudes are
M0=1

Plasma
Flow

Pump

ProbeD

D

x

y

ζ
θ
θ

d

b

a c

ξ

Fig. 2. Simplified geometry of the crossed pump and probe beams in an expanding plasma.
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cos hox � sin hoy þ mc cos h
� �eE0 � 0; ð34aÞ

cos hox þ sin hoy þ mc cos h
� �eE1 � � ik cos h

4g0

n0
nc
en�eE0; ð34bÞ
where we have identified k0x = k1xl = kg0cosh and �k0y = k1y = kg0 sinh. Note that the wave equation for

the pump beam has decoupled from the system, but there still exists a nonlinear coupling between the probe

beam and acoustic response.

Rotating our coordinate system so that it lies along the probe beam (see Appendix B), the PDE (34b)
reduces to the ODE
d

df
þ mc cos h

� �eE1 ¼ � ik cos h
4g0

n0
nc
en�eE0 ðon lines of constant nÞ; ð35Þ
where f = ycosh + x sinh and n = ycosh � x sinh. Substituting in the steady-state density perturbation

(27),
d

df
þ mc cos h

� �eE1 ¼
k cos h
8g0

n0
nc

ZKT e

mc2s

jbv0j2
v2e

2ma
xa

M0 þ i M2
0 �

c20
c2s

� �� ��1bE1 ð36aÞ

� k cos h
8g0

n0
nc

ZKT e

mc2s

jbv0j2
v2e

Cðf; nÞeE1. ð36bÞ
Integrating across the interaction region (from f0 to f1),
eE1ðf1; nÞ ¼ eE1ðf0; nÞ exp �mc f1 � f0ð Þ þ
Z f1ðnÞ

f0ðnÞ

k cos h
8g0

n0
nc

ZKT e

mc2s

jbv0j2
v2e

Cðf0; nÞdf0
" #

; ð37Þ
where f0(n) is the point at which interaction begins for a given n and f1(n) is the point at which interaction

ends. As shown in Fig. 3, these upper and lower limits of integration are easily found in this simplified
geometry; the derivation is presented in Appendix C.
sin2θ
D

dL

dS
θ

θ

π−2θ

2θ

a

b

c

d
D

Fig. 3. Geometry of the interaction region neglecting refraction and assuming symmetry.
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The gain along a ray of the probe through the interaction region is defined to be
gðnÞ �
eE1ðf1ðnÞ; nÞeE1ðf0ðnÞ; nÞ

�����
����� ð38aÞ

¼ exp �mc f1 � f0ð Þ þRe

Z f1ðnÞ

f0ðnÞ

k cos h
8g0

n0
nc

ZKT e

mc2s

jbv0j2
v2e

Cðf0; nÞdf0
( )" #

. ð38bÞ
Assuming that the pump beam remains constant through the interaction region, the integral in (38) can
be computed analytically for the self-similar background flow prescribed by (33). This derivation is pre-

sented in Appendix D. For the isothermal case, the result of the integration is simply
Re

Z f1ðnÞ

f0ðnÞ
Cðf0; nÞdf0

( )
¼ L?wr

2 sin h
arctan wr

ma=xað Þ2 þ X ð1þ X=2Þ
ma=xa

" #�����
X 1ðnÞ

X 0ðnÞ

; ð39Þ
where
X 0 ¼
n� D=2
2L? cos h

and X 1 ¼
nþ D=2
2L? cos h

. ð40Þ
When Dxa/(L^ma) � 1, it can be shown that the argument of the arctan is small, and so
Re

Z f1ðnÞ

f0ðnÞ
Cðf0; nÞdf0

( )
� L?

2 sin h
w2

r

ma=xa

X 1ð1þ X 1=2Þ � X 0ð1þ X 0=2Þ½ � ð41aÞ

¼ L?

2 sin h
w2

r

ma=xa

D
2L? cos h

1þ n
2L? cos h

� �
ð41bÞ

¼ D
2ma=xa sin 2h

1

1� ðma=xaÞ2
1þ n

2L? cos h

� �
ð41cÞ

� D
2ma=xa sin 2h

1

1� ðma=xaÞ2
; ð41dÞ
since 0 6 j2nj 6 D. Thus the gain is
gðnÞ ¼ exp �mcðf1 � f0Þ þ
k

32g0

n0
nc

ZKT e

mc2s

jbv0j2
v2e

Dxa

ma sin h
x2

a

x2
a � m2a

" #
; ð42Þ
which is independent of the velocity scale length L^.
3. Numerical implementation

In this section, we describe two numerical implementations of the theoretical models presented in Section

2. The first is a numerical evaluation of the strongly-damped, steady-state gain formula (38), which makes use

of a ray-tracing algorithm to estimate the interaction region of the two laser beams. The more sophisticated,
time-dependent model is a discretization of the differential-algebraic system of coupled mode equations (31).

3.1. Steady-state analytic model (SSA)

A numerical model for steady-state energy transfer can be obtained using the formula (38) for the

probe gain along rays. Approximating the interaction region f0(n) 6 f 6 f1(n), �D/2 6 n 6 D/2 by a
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parallelogram, the probe gain can be computed using a numerical quadrature to evaluate the integral (38)

along equispaced discrete rays nn, then summing the results.

For a plasma with uniform density, the calculation of the interaction region is a straightforward

trigonometry exercise detailed in Appendix C. In the case of a non-uniform density, such as in the

rarefaction fan considered here, the corresponding variation of the refractive index causes a deflection
of the beams that must be taken into account in the calculation of the interaction region. This can be

accomplished by ray-tracing the beam ‘‘edges’’ (given, e.g. by the FWHM diameter for a Gaussian

profile) to determine the boundaries of the deflected interaction region. This procedure, which is de-

scribed in Appendix E, involves the numerical integration of a small system of ordinary differential

equations.

The applicability of this semi-analytic, steady-state gain model is limited by the various assumptions re-

quired for the derivation of the gain formula (38). By numerically approximating the gain integral, a few of

these assumptions can be partially relaxed. For example, instead of assuming perfectly flat beams, approx-
imate pump and probe profiles can be incorporated in the numerical quadrature. A limited amount of

pump depletion can also be included by wrapping an iteration loop around the gain calculation, allowing

the pump energy to relax to a more self-consistent value.

We have implemented this steady-state model in a MATLAB [21] script. The ray-tracing uses the provided

explicit fourth-order Runge–Kutta method to compute the instantaneous beam interaction region for the

specified background density. As we will show in the next section, predictions by this method can be fairly

accurate in some regimes. In other cases, however, beam propagation effects and unsteady ion acoustic ef-

fects can result in substantial overestimates of gain. For such problems, a more physically realistic model is
required.
3.2. Time-dependent couple mode model (TDCM)

The coupled mode system (31) is a more complete model of the light propagation and unsteady acoustic

response. Considering a uniform grid with cells of size hx · hy indexed by {(j,m) : j =

1,2, . . .,N, m = 1,2, . . .,N^}, we construct a spatial semi-discretization of (31) for the values of the depen-

dent variables at the x-face centers, i.e. the cell faces perpendicular to the x direction. In particular, letbnj;m, bMj;m, bE0;j;m and bE1;j;m denote the values of bn, bM , bE0 and bE1 at the center of the right-hand x-face

of cell (j,m) (or left-hand domain boundary if j = 0), respectively.

Consequently, the ordinary differential equations for the plasma perturbations (31a) and (31b) can be

collocated at the x-face centers. The resulting equations are
1

ixa

ot �M0;m

� �bnj;m � bMj;m ¼ 0; ð43aÞ

1

ixa

ot �M0;m � i2ma
xa

� � bMj;m �
c20;m
c2s
bnj;m �

Ze2bE0;j;m
bE�
1;j;m

2memx2c2s
¼ 0; ð43bÞ
for j = 0, . . .,N and m = 1, . . .,N^. In the absence of ponderomotive excitation, there are no plasma pertur-

bations, so the initial conditions for the perturbation amplitudes are bnj;mðt ¼ 0Þ ¼ bMj;mðt ¼ 0Þ ¼ 0 for each

j and m.

Let g0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PN?
m¼1n0;mðtÞ=ncN?

q
denote the refractive index computed from the discrete transverse

average of the background density n0 defined in (33), and let mc,m, m = 1, . . .,N^, denote the discrete spatial

absorption frequency. We discretize the pump equation (31c) as
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bE0;j;m � bE0;j�1;m

hx
� i

4kg0h
2
y

�
ðbE0;j�1;m�1 þ bE0;j;m�1Þ � 2ðbE0;j�1;m þ bE0;j;mÞ þ ðbE0;j�1;mþ1 þ bE0;j;mþ1Þ

�
þ 1

2

ik
2g0

ðn0;m � �n0Þ
nc

þ mc;m

� �
ðbE0;j�1;m þ bE0;j;mÞ þ

ik
16g0

bnj�1;m þ bnj;m

nc
ðbE1;j�1;m þ bE1;j;mÞ ¼ 0; ð44Þ
and, analogously, the probe equation (31d) as
bE1;j;m � bE1;j�1;m

hx
� i

4kg0h
2
y

�
ðbE1;j�1;m�1 þ bE1;j;m�1Þ � 2ðbE1;j�1;m þ bE1;j;mÞ þ ðbE1;j�1;mþ1 þ bE1;j;mþ1Þ

�
þ 1

2

ik
2g0

ðn0;m � �n0Þ
nc

þ mc;m

� �
ðbE1;j�1;m þ bE1;j;mÞ þ

ik
16g0

bn�
j�1;m þ bn�

j;m

nc
ðbE0;j�1;m þ bE0;j;mÞ ¼ 0;

ð45Þ
for j = 1, . . .,N and m = 1, . . .,N^. In (44) and (45), we have applied the standard central differencing of the

transverse Laplacian r2
?. As explained in [17], the Crank–Nicholson-type discretization in the x direction

ensures that energy is algebraically conserved by the algorithm except for losses due to absorption.

The paraxial equations are one-way wave equations, that is, they are hyperbolic with x as the time-like

variable. Accordingly, the incident beam conditions at the left-hand boundary, bE0;0;m and bE1;0;m,

m = 1, . . .,N^, are initial conditions and are prescribed by specifying the beam cross sections and propaga-
tion angles relative to the x-direction. Since the simulation domain is artificially truncated, to obtain a well-

posed problem, boundary conditions must be imposed in the transverse direction by prescribing bE0;j;0,bE0;j;N?þ1, bE1;j;0, bE1;j;N?þ1 for j = 1, . . .,N. We assume that the fields have zero amplitude on these artificial

transverse boundaries, which is adequate so long as the beams do not reach the transverse boundaries.

The semi-discretized equations (43a)–(45), together with boundary conditions, comprise a differential-

algebraic system that can be formally expressed as
fðt; uðtÞ; u0ðtÞÞ ¼ 0; ð46Þ

where
ð47Þ
denotes the vector of dependent variables, and u 0 denotes the corresponding vector of time derivatives. We
group u in (47) by acoustic variables u1 and light variables u2, but the specific ordering of the elements of the

subvectors bnj;m, bMj;m, bE0;j;m and bE1;j;m is unimportant, so long as the ordering is consistent between the four

subvectors of unknowns.

To advance numerically the system (46) from time tn�1 to time tn, we apply a variable-order, variable-

step backward difference formula (BDF) as implemented in the differential-algebraic solver IDA [22]. For

the purposes of our algorithm description, this discretization can be written for order k in the classical lin-

ear multistep form2
ile the classical multistep formula is equivalent, in practice, the BDF algorithm is expressed typically in terms of predictor and

tor interpolary polynomials in time [23,24].
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u0n ¼ Dt�1
n

Xk
r¼0

an;jun�r; ð48Þ
where un and u0n are approximations of u and u 0 at time tn, respectively, and the time step is Dtn = tn � tn�1.

The coefficients an,r depend only on the order k and the history of the time steps, although in practice, the

coefficients an,r for r = 1,2, . . .,k are never calculated explicitly [23,24]. Only the coefficient
an;0 ¼
Xk
r¼1

Dtn
tn � tn�r

; ð49Þ
needs to be known explicitly outside of the approximation (48).

Insertion of the formula (48) in (46) results in a nonlinear algebraic system
gn � gðunÞ � f tn; un;Dt�1
n

Xk
r¼0

an;run�r

 !
¼ 0 ð50Þ
to be solved at each time step. This nonlinear system (50) is solved using Newton iteration
u‘þ1
n ¼ u‘n þ du‘n; ‘ ¼ 0; 1; . . . ; ð51Þ
where u‘n is the ‘th approximation of un, du‘n is an approximate solution of the linear system
Jðu‘nÞdu‘n ¼ �gðu‘nÞ; ð52Þ

and Jðu‘nÞ is the system Jacobian, i.e.
JðunÞ �
ogn
oun

¼ ofn

oun
þ ou0n
oun

ofn

ou0n
¼ ofn

oun
þ an;0

Dtn

ofn

ou0n
ð53Þ
evaluated at u‘n. Note that, in the Jacobian, only the coefficient an,0 appears explicitly, because
oun�r

oun
¼ 0; r ¼ 1; 2; . . . ; k; ð54Þ
that is, the previous solution vectors are independent of the current solution vector. All of the an,r for
r = 0,1, . . .,k are implicitly involved in the computation of gðu‘nÞ for (52) since they are used to approximate

u0n as in (50).

To describe in more detail the algorithm employed in evaluating the Newton update (51), we formally

express the Jacobian as
ð55Þ
where the scalar coefficients are
l � 1

ixa

an;0
Dtn

; k � ln þ
2ma
ixa

; q � Zme

2mc2s

e
mex

� �2

; r � ik
4g0nc

. ð56Þ
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The NN^ · NN^ sub-blocks in J are the identity matrix I, the diagonal matrices
3 To

data a
M � diagðMn
0;mÞ; ð57aÞ

C � diagððcn0;m=csÞ
2Þ; ð57bÞ

N � diagðbnn;l
j;mÞ; ð57cÞ

E0 � diagðbEn;l

0;j;mÞ; ð57dÞ

E1 � diagðbEn;l

1;j;mÞ; ð57eÞ
and the discrete operator
P � Dhx �
i

2k0
Dhy þ mcIþ

r
2
diag nn0;m � �nn0

� �
; ð57fÞ
where Dhx and Dhy represent the discrete first derivative and Laplacian operators, respectively, correspond-

ing to the spatial discretizations in (44) and (45).3

The values of the indices j and m in (57) coincide with those of the elements of du which they multiply,

and the (Æ)* notation is intended to indicate that, when J12 and J21 are multiplied times a vector, the factors
preceding the (Æ)* multiply the conjugate of the corresponding vector elements.

The linear system (52) for the Newton correction is itself solved iteratively during each Newton iteration

step via a block Gauss–Seidel algorithm, which only requires the multiplication of J12 and J21 times vectors.

Writing (52) in block form as
J11 J12

J21 J22

� �
du‘n;1
du‘n;2

 !
¼ �

g‘n;1

g‘n;2

 !
; ð58Þ
we perform the iteration
du‘;qþ1
n;1 ¼ �J�1

11 ðg‘n;1 þ J12du
‘;q
n;2Þ; ð59aÞ

du‘;qþ1
n;2 ¼ �J�1

22 ðg‘n;2 þ J21du
‘;qþ1
n;1 Þ ð59bÞ
for q = 1,2, . . ., where, for example, J11 ¼ J11ðu‘nÞ and ðdu‘;qn;1; du
‘;q
n;2Þ is the qth approximation of the Newton

correction du‘n. The application of J�1
11 in (59a) is a trivial operation, since the matrix J11 can be re-ordered

as a block diagonal system with 2 · 2 blocks. The application of J�1
22 in (59b) is more complicated, however,

since it requires the solution of the coupled-mode system (44) and (55) with a non-zero right-hand side. The

coupled-mode system (44) and (55) is solved by a sweeping algorithm beginning at the left boundary and

solving a sequence of linear systems for the planes of unknowns corresponding to successive values of j.

These linear systems are solved using a block-Jacobi algorithm, where a tridiagonal linear system solver
is used to invert the diagonal blocks.

Hence, the solution of the nonlinear system (50) at each time step via the algorithm just described in-

volves three levels of nested iteration: the Newton iteration (51), the block Gauss–Seidel iteration (59),

and the block-Jacobi iterative solution of the linear systems solved in the sweeping algorithm used to apply

J�1
22 in each step of (59b). This raises the issue of sensible convergence tolerances for each of the iterative
be more precise, for j = 1, only the terms of Dhx and Dhy for j = 1 are included in P. The remaining terms corresponding to initial

t j = 0 are included on the right-hand side.
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processes. In applying this algorithm to the problems described in the next section and others, we have ob-

served that the convergence of the J�1
22 iteration is typically quite rapid, achieving several digits of accuracy

in the relative residual in few iterations. Moreover, it is usually sufficient to perform only a single iteration

of (59) to obtain rapid convergence of the Newton iteration, using the solution at the previous time step as

the initial guess. Thus, the best general strategy is to perform only a small number of linear system itera-
tions to minimize the cost of each Newton iteration. If at some point the number of Newton iterations re-

quired to reach the desired tolerance becomes unacceptably large, tighter tolerances on the inner linear

iterations can be specified.

In our implementation of the preceding algorithm, we used the general-purpose solver IDA (impli-

cit differential-algebraic) [22], which is available as part of the SUNDIALS software suite from

www.llnl.gov/CASC/sundials. IDA is an ANSI C, MPI-parallel implementation of an earlier

FORTRAN code DASPK [25,26] that supports automatic time step and integration order k (up to

k = 5) adaption for the backward difference formula (48) based on user-provided error criteria. To
advance the solution, IDA controlled the Newton update, computing u‘n by (51) and ðu‘nÞ

0
by (48). Taking

u‘n, ðu‘nÞ
0
, Dtn, and an,0 as input from IDA, our routines implemented the inner two iterations that solve (59),

subsequently providing to IDA the Newton corrections du‘n needed to form the update (51).
4. Numerical results

We now present some numerical examples to demonstrate the behavior of the energy transfer model in
various regimes. We assume that the pump and probe beams have the same diameter D ” D0 = D1 and con-

sider a ‘‘narrow beam’’ problem where D = 10k, a ‘‘medium beam’’ problem where D = 100k, and a ‘‘wide

beam’’ problem where D = 1000k. For each case, we investigate the dependence of the energy transfer upon

the initial velocity scale length over the range L0
?=D ¼ 1, 5, 10 and 100.

In all of the test cases, we consider a pair of 0.351 lm-wavelength beams crossing in a square domain

0 6 x 6 L, �L/2 6 y 6 L/2, where we take L = 7.5D. The intensity profiles of the incident pump and probe

beams at the left (x = 0) boundary are
IbðyÞ ¼ Imax
b exp �2

2jy � abj
D

� �6

logð2Þ
" #

; b ¼ 0; 1; ð60Þ
respectively. Here, D denotes the full-width, half-maximum beam spot diameter; a0 and a1 are the y-

coordinates of the pump and probe beam spot centers, respectively. Choosing a0 = 0.85D and
a1 = �0.85D, we aim the beams at angles ±12.5� to the horizontal (i.e. a 25� angle between the beams)

so as to intersect, in the absence of plasma, at the center of the domain. The maximum pump and

probe intensities are specified as Imax
0 ¼ 1015 W/cm2 and Imax

1 ¼ 1 W/cm2, respectively. The use of a weak

probe avoids pump depletion in all of the test cases, including the wide beam cases that achieve the

largest gain. This allows more direct comparison with the analytic gain prediction, which assumes no

pump depletion.

We assume that the background plasma evolves as the adiabatic rarefaction (33) about y = 0 with c = 5/3

and a = 0.1. The initial electron and ion temperatures are 2.5 keV and 0.5 keV, respectively. Using the spe-
cies-averaged ionization Z = 3.5 for a CH plasma therefore yields the sound speed cs = 4.76 · 105 m/s,

which in turn yields the acoustic frequency xa = 2k^cs = 3.69 · 1012 rad/s. The damping rate is ma = 0.1xa,

and inverse Bremsstrahlung absorption is neglected in these simulations. The model system is discretized as

described in Section 3.2 on a spatial grid of size 10D/k · 16D/k, which is adequate to obtain several digits of

accuracy in the probe gain. A simulation time of 50 ps is used for all runs.

http://www.llnl.gov/CASC/sundials
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4.1. Probe gains

The primary quantity of interest in these crossed beam calculations is the energy transfer between the

beams. We characterize this by the probe gain
Fig. 4.

code. C
G � 1

2
log

R L=2
�L=2 I1ðL; yÞdyR L=2
�L=2 I1ð0; yÞdy

0@ 1A; ð61Þ
which was computed at the end of each time step. The integrals in (61) denote numerical quadratures of the

probe intensity over the z = 0 entrance plane and z = L exit plane.

The gain (61) computed by the time-dependent coupledmode (TDCM)model is comparedwith the steady-
state, analytic (SSA) model (38) where the integrals are evaluated numerically, including assumed Gaussian

beam profiles (60). It is expected that the analytic model will over-predict the energy transfer because it fails

to account for refraction and diffraction, both of which, in this geometry, tend to direct energy away from

the region of strongest interaction. Of course, the effects of refraction diminish with increasing velocity scale

length, and so discrepancies at long scale lengths should primarily be due to diffraction.

In addition, a steady-state coupled mode (SSCM) model, where the coupled light equations (31c) and

(31d) are solved using the steady state acoustic response (27), is evaluated. This third set of computations

is included as an attempt to demonstrate the effect on energy transfer by the phenomena of refraction and
diffraction and additionally isolates important time-dependent effects.

4.1.1. Narrow beams

We consider first a pair of beams with D = 10k. In Fig. 4, the probe gain G computed by (61) is plotted as

a function of time for four values of the initial velocity scale length: L0
? ¼ D, L0

? ¼ 5D, L0
? ¼ 10D, and
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L0
? ¼ 100D. The curves without circles denote the gain predicted by the TDCM code. The curves with cir-

cles denote the predictions obtained by the SSA model. Note that this steady-state model does in fact vary

with time because it is evaluated at each time using the time-dependent velocity scale length L^ given in

(33).

In all four cases, the disagreement between the SSA and the TDCM gains at early time (t < 10 ps) occurs
because the steady-state model cannot predict the transient growth of the acoustic wave, which concludes

after roughly four damping times. Beyond t = 20 ps or so, the agreement of the models is good, although

the SSA results consistently over-predict the gain. In fact, the SSA curves for the L0
? ¼ 5D and L0

? ¼ 10D
cases appear to diverge somewhat from the TDCM gains near 50 ps. In addition, for t < 20 ps in the short-

est scale length case, the SSA and TDCM models disagree substantially. Certainly, refraction is the main

suspect, as this case starts with severe beam bending and only a small portion of the interaction region ini-

tially overlaps with the sonic region. By 50 ps the background scale length is approximately 10D, so the

beam bending is significantly reduced, and the agreement is better.
In Fig. 5, the gain as computed using the SSCM code is plotted as curves with diamonds. There is excel-

lent agreement in the long velocity scale length case where there is little refraction, which suggests that the

discrepancy between the SSA gain and the TDCM result is due to diffraction. The intermediate SSCM cases

are similarly closer to the TDCM curves at longer times suggesting that the curves are asymptotic to the

same values. However, for the shortest scale length case, there is still substantial disagreement in the inter-

val 10 ps [ t [ 30 ps, which suggests that a reduced interaction region due to beam bending cannot be the

lone cause. Surprisingly, the L0
? ¼ 5D SSCM gain is actually higher than the SSA result for this same time

interval. The physics of the SSCM and TDCM codes differs only in the inclusion of time derivative terms,
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which suggests the presence of a time dependent mechanism that postpones the onset of a steady state and

suppresses the gain.

4.1.2. Medium beams

We next consider a pair of beams with D = 100k. The length scales are all an order of magnitude bigger
than for the narrow beam case, increasing the interaction length and thus the gain by roughly an order of

magnitude. However, the time scale for the background flow (L0
?=cs) is an order of magnitude slower be-

cause the reference sound speed is held fixed.

In Fig. 6, the probe gains computed by the SSA and TDCM models are again plotted as a function of

time for the four values of the initial velocity scale length. With the exception of the shortest scale length

case, the two models agree well after the initial transient period. For the L0
? ¼ D case, where refraction is

initially quite strong, there is substantial disagreement over the entire 50 ps simulation. With the reduced

time scale, the velocity scale length in this case changes by only a factor of two over a 50 ps run and so
significant refraction occurs for the duration.

The probe gain computed by the SSCM model is presented in Fig. 7. There is better agreement between

the SSCM and TDCM models as compared to the SSA and TDCM models for the two longer scale length

cases. Nevertheless, a sizable discrepancy in the shortest scale length case is evident, and as before, the gain

in the L0
? ¼ 5D case as computed by SSCM is higher than the SSA result. Again, this points to a significant

time-dependent effect causing gain suppression that has stronger effects as the scale length decreases.

4.1.3. Wide beams

Finally, we consider a pair of beams with D = 1000k. Relative to the medium beam case, the length scales

are increased by another order of magnitude and the background time scale reduced by another order of

magnitude. The gain should be roughly one order of magnitude higher.
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We note that these wide beam calculations are very large, since a 10,000 · 16,000 spatial grid was re-

quired, yielding a total of 160 million mesh cells, with four complex dependent variables per cell. Approx-

imately 7.5 to 16 wall-clock hours on 400 processors of the MCR Intel GNU/Linux cluster were required to

complete 50 ps of simulation time, with the runtime increasing with decreasing scale length. In comparison,

the 25 zone numerical quadrature of the SSA model, computed at 10 intervals of 5 ps each in a MATLAB

script, took approximately 4 s on a single processor of the same machine.

In Fig. 8, the probe gains computed by the SSA and TDCM models are again plotted as a function of
time for the four values of the initial velocity scale length. As before good agreement between the models is

seen, except in the shortest scale length case. In Fig. 9, excellent agreement between the SSCM and TDCM

models is demonstrated, with the now familiar exceptions of the shorter scale length cases. The nature of

the implicated time-dependent effects will be identified in the next section.

4.2. Beam motion and frequency mismatch

In all short scale-length cases (L0
? ¼ D), the gain computed by the TDCM code is less than that predicted

by either of the steady-state methods. This suggests that a time-dependent mechanism exists in the short

scale length case that postpones the achievement of steady-state. In the short scale length case, the refrac-

tion is not only strong, but the time-dependence of the background flow alters the refraction significantly,

that is, the beams move at a significant fraction of the sound speed. As discussed in Section 2.1, this beam

motion is believed to be a mechanism that detunes the three-wave resonance.

We first will demonstrate empirically that beam motion is closely correlated with gain suppression. Di-

rect consideration of the magnitude of the transverse beam velocities provides further support for this

explanation. By post-processing the coupled-mode calculations, the validity of the phase-shifted formula
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(29) will be demonstrated. Finally, the phase mismatch will be shown to correspond to a shift of the reso-

nant region, an effect that has significance for the proper interpretation of cross-beam experiments in un-

steady plasma flows.

As the phenomenon occurs for all beam widths, just at different rates, without loss of generality, we con-

sider the medium beam, short initial scale length case. We conduct an experiment where the background

flow is held fixed until tc = 20 ps, after which it is allowed to resume its normal time variation, that is,
L? ¼
L0
? þ cþ1

2
cstc; for 0 6 t 6 tc

L0
? þ cþ1

2
cst; for t P tc.

(
ð62Þ
Thus, the background is initially steady, and while there is refraction, there is no beam motion. At 20 ps,

the background begins to move impulsively causing the beams to move. The TDCM gain resulting from
this experiment is plotted in Fig. 10 against the steady-state SSCM gain and the TDCM gain computed

with the unaltered background flow. After the transient, a time suitable for those acoustic waves no longer

ponderomotively forced to damp, the gain curve for this experiment comes into agreement with the unal-

tered TDCM gain curve. This points to beam motion as the cause for the drop in gain.

Note that, since the beam refraction is computed as an instantaneous quantity given the imposed back-

ground flow, there is no memory effect inherent in the beam motion. The damping of the acoustic waves

erases memory of past forcing, and so after several damping times, there is no lasting dependence on the

path of evolution. Indeed, Fig. 10 demonstrates this, since the two TDCM gain curves quickly come into
agreement after the history of the acoustic waves is damped out.

How does the beam motion alter the gain and why does it only do so in the shortest scale length case?

While the ponderomotive forcing is relatively steady in the frame attached to the intersection of the beams,
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the refraction-induced translation of the interaction region relative to the lab frame creates an effective fre-

quency for the forcing. Specifically, a sinusoidal forcing pattern in y with wavenumber 2k^ translating rel-

ative to a fixed point with velocity v appears as a frequency of 2k^v in the fixed frame. Of course, this is a

crude argument since both the fluid and the ponderomotive forcing are accelerating (decelerating) relative

to laboratory frame. Nevertheless, we assert that the phase mismatch ot/a in (29) is approximately this fre-
quency, _/aðtÞ � 2k?vðtÞ. A similar argument can be made associating o2t/a with the deceleration of ponder-

omotive force. The requirement for phase mismatch terms to be important is that they compete with the

damping term, for example,
Fig. 1

increa

beam,
_/aðtÞ
xa

J
ma
xa

) v
cs

J
ma
xa

. ð63Þ
This relative damping rate is one tenth for the plasma considered here, so transverse velocities of at least

10% of the sound speed are required.

In Fig. 11, estimates of the transverse velocity of the interaction region are plotted. These are obtained

by integrating the ray equations for the rarefaction density profile and computing the velocity of the inter-

section of the central ray of each beam. In the isothermal case, an exact form for the ray trajectory and its

time derivative can be derived (see Appendix E), but for the adiabatic equations, the system must be inte-

grated numerically.

Note that the transverse velocity of the ray intersection point as a fraction of the sonic line sound speed
has the same evolution for each of the three beam widths when the time is scaled by the beam diameter.

From the figure it is obvious that for the shortest scale length problem, L0
? ¼ D, the transverse velocity
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is initially of the same order of magnitude of macs/xa. With increasing scale length, the transverse velocity

rapidly diminishes, due to the fact that the density gradient is reduced as the velocity scale length increases.

That the behavior of the deceleration of the interaction region is very similar can be ascertained by consid-

ering the slopes of the curves. We therefore would expect to see the most dramatic effects of frequency mis-

match in the shortest scale length case and perhaps somewhat in the L0
? ¼ 5D case. Indeed this was shown

in Section 4.1.

Compelling a posteriori evidence of the effects of frequency mismatch can be obtained in a post-

processed consistency check by evaluating the gain from the analytic acoustics responses, that is, Eqs.

(27) and (29). This is done as follows:

(1) The time-dependent, self-consistent electric and acoustic fields at some time are obtained from the

TDCM code.

(2) The gain is computed using the steady-state density perturbations (27):

(a) the acoustic response is computed from the steady-state formula (27) using the TDCM electric

fields;

(b) the electric fields are recomputed using this assumed density perturbation;

(c) and the gain is computed from these new electric fields.
(3) The gain is computed using the steady-state density perturbations with frequency mismatch (29):
(a) the acoustic response is computed from the steady-state formula with frequency mismatch (29)

using the TDCM electric fields and frequency shifts approximated from the TDCM density

perturbation;
(b) the electric fields are recomputed using this assumed density perturbation;

(c) and the gain is computed from these new electric fields.
Step 3(a) involves computing a local estimate of the density perturbation frequency and its time deriv-

ative. Noting that, for bn ¼ jbnj exp i/ðtÞ,

otbnbn ¼ iot/þ otjbnj

jbnj ðjbnj > 0Þ. ð64Þ
We make the approximation
ot/a � ot/ ¼ Im
otbnbn
 �

; ð65Þ
which is reasonable after the initial start-up transients have damped away. The time derivative of ot/a is

approximated using first-order finite differencing.

The results of these post-processed gain predictions are plotted in Fig. 12. In comparison with the directly

computed TDCM result, the gain calculated using the original steady-state density formula (27) is over-pre-

dicted, as expected. The gain calculated using the modified steady-state density formula that accounts for fre-

quencymismatch (29), after an initial layer where the approximation (65) is dubious, is in excellent agreement

with the directly computed TDCM gain and strongly supports the frequency mismatch theory.
Finally, careful consideration of (29) suggests that the frequency mismatch can be interpreted as a shift

of the resonant region. Without any shift, resonance occurs where the real part of the denominator vanishes

and is limited by the small non-zero damping. In the presence of a frequency mismatch, the entire denom-

inator could potentially vanish, but we restrict our consideration only to the case where the real part of the

denominator vanishes. Choosing the root closest to y = 0, this occurs at
y ¼ 2 ot/a . ð66Þ

L? cþ 1 xa
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For 0.1 6 jot/a/xaj 6 1, this gives an effective shift of 3–30 lm for the short scale length, medium beam

width case. Associating the frequency mismatch with the downward translation of the ponderomotive

forcing suggests that ot/a 6 0, which corresponds to a shift into regions of slower plasma velocity. This

could be an important effect in experiments where beams are aimed to intersect or avoid a resonance

region.
As evidence of a downward shift of the resonance region in the L0

? ¼ D case, consider a sequence of such

problems in which the pair of beams is also shifted downward by varying amounts. As before, we fix the

background flow for the first 20 ps and then let it vary normally. In Fig. 13, the probe gain is plotted for the

original, unshifted beams (dotted lines), a 10-lm downward shift (dash-dot line), a 20-lm downward shift

(solid line), and a 30-lm downward shift (dashed line). All four cases reach a steady-state gain before the

20 ps cutoff. At the cutoff, when the background plasma is again permitted to evolve, all four curves exhibit

a transient response lasting for a few picoseconds, which is approximately the characteristic damping time

m�1
a . After this transient, the gain curves for the unshifted and 10-lm cases are significantly lower than dur-
ing the pre-cutoff interval, and the jump in the 10-lm shifted curve is somewhat less than in the unshifted

case. The 20-lm shift curve begins to increase from about its pre-cutoff value, whereas the gain for the 30-

lm shifted beams increases dramatically after the cutoff.

The behavior of the gain curves in Fig. 13 is consistent with the hypothesis that, prior to the cutoff, the

resonance region is centered on the sonic line because there is no beam motion, while after the cutoff the

resonance region has shifted downward as much as nearly 20 lm. The size of the resonance shift will differ

for each case because the background gradient, and thus the transverse beam velocities change. For the
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unshifted and 10-lm shifted curves, the behavior is consistent with a sudden downward shift of the reso-

nance region at the cutoff time the moves the resonance region further away from the beam interaction re-

gion, decreasing the gains. In the 20-lm shift case, the gain is relatively unchanged, which is consistent with

a shift of the resonant region such that it remains within the interaction region. When the beam pair is
shifted by 30 lm, the hypothesized downward shift of the resonance region at the cutoff apparently results

in a larger overlap of the interaction region than before the cutoff, with a corresponding gain increase.
5. Conclusions

Crossed laser beams in an expanding flow can exchange energy through a beat-wave-driven ion acoustic

wave. To predict the behavior, we have derived a nonlinear, coupled-mode model of this process composed
of a pair of temporal ordinary differential equations describing the ion acoustic response and a pair of par-

axial light equations. Restricting the light model to two dimensions, the numerical discretization of the cou-

pled mode system of differential-algebraic equations was presented in detail. To interpret the probe beam

gain predictions, the amplitude gains from this numerical model were compared with gains integrated

numerically from a steady-state acoustic response evaluated using ray-traced beam positions.

A series of numerical experiments for varying beam diameters were presented to demonstrate the effects

of unsteady beam refraction on probe gain. These numerical simulations were based on a self-similar back-

ground flow characterized by an initial velocity length scale L^, and the probe beam intensity was purposely
chosen to be small relative to the pump beam intensity to eliminate the effects of nonlinear pump depletion

in the comparisons. It was found that when L^ was large compared to the beam diameters, the models

produced similar results and discrepancies were attributable to beam diffraction. However, when L^ was
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the same order as the beam diameters, unsteady effects in the beam propagation lead to reduced energy

transfer between the beams, and thus a large discrepancy between the steady-state and unsteady models.

This gain suppression was attributed to a phase shift detuning the three-wave resonance and interpreted

as an effective shift of the resonant region in the flow. As such, the possible occurrence and effects of un-

steady beam refraction should be considered in the design and analysis of crossed-beam experiments with
steep initial flow gradients and significant flow evolution.

One-dimensional coupled mode models are often used to approximate and understand laser plasma

interactions. In such investigations, the background plasma is assumed frequently to be uniform. The

method described here demonstrates a numerical technique to address nonlinear coupled mode models

in two and, by extension, three dimensions with prescribed transverse plasma gradients. Indeed, the obvious

extension of the current work is to replace the analytically prescribed background flow with experimentally

measured backgrounds or backgrounds computed using fully nonlinear hydrodynamic models. Given the

constraints on computational resources, it is unlikely that any computational tool including all of the phys-
ical plasma and laser interaction effects will be available in the near term for rapid experimental design and

analysis. Thus, reduced numerical models like the one presented here can be valuable tools to design and to

understand future laser plasma experiments.
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Appendix A. Sound speed perturbations

We begin with the differential relation (4). Further defining
c2a ¼ ðc0 þ dcÞ2 ¼ c20 þ 2c0dcþ dc2; ðA:1Þ

substitution of (9) into (4) gives
ðdp0 � mc20 dn0Þ þ ðdðdpÞ � mc20 dðdnÞ � 2mc0 dcdn0Þ þ � � � ¼ 0; ðA:2Þ

where products of small terms have been omitted. Collecting terms of like order and setting each result to

zero gives
dp0 � mc20 dn0; ðA:3aÞ

dðdpÞ � mc20 dðdnÞ þ 2mc0 dcdn0. ðA:3bÞ

However, by the definition of the c-law sound speed,
c2 ¼ cp
mn

; ðA:4aÞ

c20 1þ 2dcþ dc2
2

� �
¼ cp0 1þ dp � dn

� �
� dp dnþ � � �

� �
. ðA:4bÞ
c0 c0 mn0 p0 n0 p0 n0
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Again equating terms of like order, we find
c20 �
cp0
mn0

and
2dc
c0

� dp
p0

� dn
n0

� �
. ðA:5Þ
Substituting these into (A.3b),
dðdpÞ � mc20 dðdnÞ þ mc20
dp
p0

� dn
n0

� �
dn0. ðA:6Þ
Rewriting in terms of dp/p0 and dn/n0,
p0 d
dp
p0

� �
þ dp

p0
dp0 � mn0c20 d

dn
n0

� �
þ mc20

dn
n0

� �
dn0 þ mc20

dp
p0

� dn
n0

� �
dn0; ðA:7Þ
and finally, substituting in (A.3a),
d
dp
p0

� �
� cd

dn
n0

� �
. ðA:8Þ
We now integrate to find that
dp � mc20 dn; ðA:9Þ

where the constant of integration has been set to zero, i.e. there are no density perturbations without cor-

responding pressure perturbations.
Appendix B. Coordinate transformation

It is convenient to consider the interaction region in the coordinate system aligned with the probe beam,

(f,n). Note the following transformations:
x ¼ f cos h� n sin h; ðB:1aÞ

y ¼ f sin hþ n cos h; ðB:1bÞ

f ¼ x cos hþ y sin h; ðB:1cÞ

n ¼ �x sin hþ y cos h. ðB:1dÞ
Furthermore,
o

ox

����
y

¼ of
ox

����
y

o

of

����
n

þ on
ox

����
y

o

on

����
f

¼ cos h
o

of

����
n

� sin h
o

on

����
f

; ðB:2aÞ

o

oy

����
x

¼ of
oy

����
x

o

of

����
n

þ on
oy

����
x

o

on

����
f

¼ sin h
o

of

����
n

þ cos h
o

on

����
f

. ðB:2bÞ
Thus, along a line of constant n,
cos h
o

ox

����
y

þ sin h
o

oy

����
x

þ mc �
o

of

����
n

þ mc. ðB:3Þ
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Appendix C. Determination of the integration region

We address the limits of integration, working with dimensional quantities for clarity. We assume sym-

metry and neglect refraction, so the region of interaction, as shown in Fig. 3, is the diamond abcd with diag-

onals aligned with the (x,y) axes. By (37), for a given n, we seek to integrate from edge ab to edge bc to
obtain the amplitude of the probe along that n-ray after the integration. The equations for lines f0(n)
and f1(n), which define the beginning and end of the interaction region, respectively, can be obtained from

simple geometry.

The length of the side of the diamond Dd is found from the relation between the sine of an angle and the

legs and hypotenuse of a right triangle:
Table

Vertic

Vertex

a

b

c

d

D ¼ Dd sin 2h ) Dd ¼
D

sin 2h
. ðC:1Þ
The length of the longer diagonal of the diamond dL is obtained from the law of cosines,
dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2

d ½1� cosðp� 2hÞ�
q

ðC:2aÞ

¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ cos 2h�
2sin2hcos2h

s
ðC:2bÞ

¼ D csc h. ðC:2cÞ
Similarly, the shorter diagonal dS is
dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2

d ½1� cosð2hÞ�
q

ðC:3aÞ

¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2h

2sin2hcos2h

s
ðC:3bÞ

¼ D sec h. ðC:3cÞ
Since both coordinate systems are collocated with the center of the diamond, we can easily determine the

coordinates of each vertex in either frame, as listed in Table 1.

Each pair of points uniquely determines a line. The f-coordinate of lower limit in terms of n is
f0 þ 1
2
D tan h

nþ 1
2
D

¼ � cot hþ tan h
2

) f0ðnÞ ¼ � 2n cos 2hþ D
2 sin 2h

. ðC:4Þ
Similarly, the upper limit is
f1 � 1
2
D cot h

nþ 1
2
D

¼ tan h� cot h
2

) f1ðnÞ ¼ � 2n cos 2h� D
2 sin 2h

. ðC:5Þ
1

es of the interaction region in the flow and probe beam coordinates

(x,y) (f,n)

� 1

2
D csc h; 0

� 

� 1

2
D cot h; 1

2
D
�


0; 12D sec h
� 


1
2D tan h; 12D

�

1
2
D csc h; 0

� 

1
2
D cot h;� 1

2
D
�


0;� 1
2
D sec h

� 

� 1

2
D tan h;� 1

2
D
�
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Appendix D. Integration of the exponent

Returning to (37), for a given n, the gain across the interaction region is given by (38). We seek to deter-

mine the functional form of the integral in the exponent. We note that M0 = M0(f,n) and c0 = c0(f,n) and
neglect f-variation in eE0 such that
IðnÞ �
Z f1ðnÞ

f0ðnÞ
Cðf0; nÞdf0 ¼

Z f1ðnÞ

f0ðnÞ

2ma
xa

M0 � i M2
0 �

c20
c2s

� �� ��1

df0. ðD:1Þ
Make the change of variables
X ¼ y
L?

¼ sin h
L?

f0 þ cos h
L?

n

� �
) dX ¼ sin h

L?
df0. ðD:2Þ
Then
IðnÞ ¼ L?

sin h

Z X 1ðnÞ

X 0ðnÞ

2ma
xa

M0ðX ; nÞ � i M2
0ðX ; nÞ � c20

c2s
ðX ; nÞ

� �� ��1

dX . ðD:3Þ
Without loss of generality, we substitute the adiabatic background expansion (33) into (D.3);
the isothermal result can be recovered by taking c = 1 in the result. Making this substitution,

we obtain
IðnÞ ¼ L?

sin h

Z X 1ðnÞ

X 0ðnÞ

2ma
xa

X þ 1ð Þ � iX 1� c� 1

2

� �2
" #

X þ ðcþ 1Þ
 !" #�1

dX . ðD:4Þ
Defining
f ðX Þ � 1� c� 1

2

� �2
" #

X þ cþ 1

2
ðD:5Þ
and
w � cþ 1

2

� �2

� ma
xa

� �2

þ i
c2 � 1ð Þ

2

ma
xa

" #�1=2

; ðD:6Þ
the solution is
IðnÞ ¼ L?

sin h
warctan w

ma
xa

� if ðX Þ
 �� �����X 1ðnÞ

X 0ðnÞ
. ðD:7Þ
To determine the real part of (D.7), first note that, for x; y 2 R,
arctan½xþ iy� ¼ 1

2
arctan

2x
1� x2 � y2

� �
þ i

1

4
ln

x2 þ ðy þ 1Þ2

x2 þ ðy � 1Þ2

" #
þ np; ðD:8aÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
xþ iy

p
¼ �

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ x

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� x

q� �
; ðD:8bÞ
where n is any integer. Thus,
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w � wr þ iwi ðD:9aÞ

¼
ffiffiffi
2

p

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ cþ 1

2

� �2

� ma
xa

� �2
s

� i

ffiffiffi
2

p

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � cþ 1

2

� �2

þ ma
xa

� �2
s

; ðD:9bÞ
where
r2 � cþ 1

2

� �2

� ma
xa

� �2
" #2

þ ma
xa

c2 � 1ð Þ
2

� �2
ðD:10Þ
and so
IðnÞ ¼ L?

sin h
wr þ iwið Þ arctan wr

ma
xa

þ wif ðX Þ
� �

þ i wi

ma
xa

� wrf ðX Þ
� �� �����X 1ðnÞ

X 0ðnÞ
. ðD:11Þ
Therefore,
RefIðnÞg ¼ L?

2 sin h
wr arctan

2ðwrma=xa þ wif ðX ÞÞ
1� ðwrma=xa þ wif ðX ÞÞ2 � ðwima=xa � wrf ðX ÞÞ

2

" # 

�wi

2
ln

wrma=xa þ wif ðX Þð Þ2 þ wima=xa � wrf ðX Þ þ 1ð Þ2

wrma=xa þ wif ðX Þð Þ2 þ wima=xa � wrf ðX Þ � 1ð Þ2

" #!�����
X 1ðnÞ

X 0ðnÞ

. ðD:12Þ
For an isothermal plasma, wi = 0, and the real component of the integral reduces to
Re IðnÞf g ¼ L?

2 sin h
wr arctan

2wrma=xa

1� wrma=xað Þ2 � wrf ðX Þð Þ2

" #�����
X 1ðnÞ

X 0ðnÞ

ðD:13aÞ

¼ L?

2 sin h
wrarctan wr

ma=xað Þ2 þ X ð1þ X=2Þ
ma=xa

" #�����
X 1ðnÞ

X 0ðnÞ

ðD:13bÞ

¼ L?

2 sin h
wr arctan wr

ma=xað Þ2 þ X 1ð1þ X 1=2Þ
ma=xa

" # 

� arctan wr

ma=xað Þ2 þ X 0ð1þ X 0=2Þ
ma=xa

" #!
; ðD:13cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where w�1
r ¼ 1� ðma=xaÞ2. We note that
X 0 ¼
f0 sin hþ n cos h

L?
¼ n� D=2

2L? cos h
; ðD:14aÞ

X 1 ¼
f1 sin hþ n cos h

L?
¼ nþ D=2

2L? cos h
. ðD:14bÞ
Appendix E. Isothermal ray traced solution

Given the one-dimensional, self-similar rarefaction flow (33), a ray-traced model can approximate the

beam paths and the motion of the interaction region. The two-dimensional ray-traced equations for prop-

agation through a flow in the y-direction reduce to
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dy
dx

����
t

¼ q
cos h0

; yðx0; tÞ ¼ y0; ðE:1aÞ

dq
dx

����
t

¼ 1

2 cos h0

og2

oy

����
t

; qðx0; tÞ ¼ sin h0; ðE:1bÞ
where y(x, t) is the ray height at horizontal location x and time t, q is proportional to the normal to the

wavefront, (x0,y0) is the initial location of the ray at angle h0 from the horizontal, and g is the index of

refraction given by
g2 ¼ 1� n0ðy; tÞ
nc

. ðE:2Þ
For an adiabatic flow, the ray-tracing equations (E.1) must be integrated numerically as a system of ordin-

ary differential equations. However, in the isothermal case,
g2 ¼ 1� a exp � y
L?

� �
; ðE:3Þ
and the ray-tracing equations (E.1) can be solved analytically.

Differentiating (E.1a) with respect to x and substituting in (E.1b),
o
2y
ox2

����
t

¼ 1

2cos2h0

og2

oy

����
t

; ðE:4aÞ

yðx0; tÞ ¼ y0;
oy
ox

����
t

ðx0; tÞ ¼ tan h0. ðE:4bÞ
Define
uðy; tÞ � oy
ox

����
t

) o2y
ox2

����
t

¼ ou
ox

����
t

¼ ox
oy

����
t

oy
ox

����
t

¼ 1

2

ou2

oy

����
t

. ðE:5Þ
Substituting this into (E.4a), we have
ou2

oy

����
t

¼ 1

cos2h0

og2

oy

����
t

. ðE:6Þ
Integrating gives
uðy; tÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 þ

g2 � g20ð Þ
cos2h0

s
; ðE:7Þ
where u0 = u(y0, t) and g0 = g(y0, t). Rewriting this in terms of y,
oy
ox

����
t

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2h0 þ

a
cos2h0

exp � y0
L?

� �
� exp � y

L?

� �� �s
ðE:8aÞ

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� a exp � y

L?

� �s
; ðE:8bÞ
where
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a � a
cos2h0

P 0 and b � tan2h0 þ a exp � y0
L?

� �
P 0. ðE:9Þ
The positive root of (E.8) is the unique solution that satisfies the boundary condition at (x0,y0).

Let y = �L^ lnz, then (E.8b) can be written as
1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b� az

p oz
ox

����
t

¼ � 1

L?
; ðE:10Þ
where the right-hand side is independent of x. Integrating,
2ffiffiffi
b

p arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� az

b

r� �
¼ xþ C

L?
; ðE:11Þ
where the constant of integration is
C ¼ �x0 þ
2L?ffiffiffi
b

p arctanh
tan h0ffiffiffi

b
p

� �
. ðE:12Þ
Solving (E.11) for y, we arrive at
y ¼ �L? ln
b
a
sech2f

� �
; ðE:13Þ
where
f �
ffiffiffi
b

p

2L?
x� x0ð Þ þ arctanh

tan h0ffiffiffi
b

p
� �

. ðE:14Þ
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